

Networking in Extreme Environments

Example UWB Systems

Link Budget Calculations

7 April Industry Day Workshop

Dr. William Duff

Interference Study

Operational Parameters for Example Systems

SYSTEM TYPE	HAND HELD	HIGH DATA/ SHORT RANGE	RADAR 1 m ² TARGET	RADAR PERSONNEL 1 m ²
POWER dBm	14	10	40	50
RANGE Meters	500	100	100	100 Foliage 10% of Range*
DATA RATE	10 Kbps	10 Mbps	10 Kpps	100 pps
FREQUENCY	200 – 400 MHz	6 -7 GHz	6 – 7 GHz	700 – 1000 MHz
BANDWIDTH	200 MHz	1 GHz	1 GHz	300 MHz
SIGNAL/NOISE dB	10	7	2	6.6
INTERFERENCE/ NOISE dB	6 @20 m	-9 @10 m	- 21 @10 m	20 @10 m

One Way Foliage Loss = 0.2 F0.3 R0.6 = 0.2 (850)0.3(10)0.6= 0.2(7.57)(3.98) = 6.0 dB Round Trip Foliage Loss = 12 dB

Link Budget and EMI Analysis

Link Budget:

$$S/N = P_T + G_T - L_T - L + G_R - L_R - P_N$$

Free Space Propagation Loss: ---- Plane Earth Propagation Loss:

$$L = (-28 + 20 \text{ Log F} + 20 \text{ Log D})$$
 $L = 40 \text{ Log D} - 20 \text{ Log H}_{T}H_{R}$

Radar

$$S/N = 17 + P_T + G_T + 10 LOG A_T + G_R - L_S - 40 Log R - 20 Log F - P_N$$

Interference Analysis:

$$I/N = P_{TP} + 10Log [(DC) (BWCF)] + G_{TR} - L_{T} - (-28 + 20LogF + 20 Log D) + G_{RT} - L_{R} - (-174 + NF + 10LogBW)$$

S/N = Signal to Noise Ratio (dB)

 G_{T} = Gain of TX Antenna (dB)

L = Propagation Loss (dB)

 L_R = System Loss at RX (dB)

F = Frequency (MHz)

 H_{T} = Height of TX Antenna (meters)

 H_R = Height of RX Antenna (meters)

 P_{TP} = Peak UWB Power (dBm)

BW = RX Bandwidth (Hz)

PW = Pulse Width (Seconds)

BWCF = 0 for BW > 1/PW

BWCF = (PRF) (PW) for BW < PRF

 G_{TR} = Gain of TX Antenna in Direction of RX

 A_T = Radar Cross Section (m²)

R = Range (meters)

 P_{τ} = TX Power (dBm)

 L_T = System Loss at the TX (dB)

 G_{R} = Gain of RX Antenna (dB)

 $P_N = RX Input Noise (dBm)$

D = Distance (meters)

 P_N = Receiver Noise (dBm)

= -174 + NF + 10 Log BW (Hz)

NF = RX Noise Figure (dB)

DC = Duty Cycle = (PW) (PRF)

PRF = Pulse Repetition Rate (pps)

BWCF = (BW) (PW) for BW > PRF

I/N = Interference to Noise in dB

 G_{RT} = Gain of RX Antenna in Direction of TX

 L_S = Total System Loss (dB)

Hand Held Communications

UWB Link Data

Range Data Rate S/N@ Max Range Peak Power Pulse Width Center Frequency Bandwidth Antenna Gain Antenna Height	500 m 10 kbps 10 dB 14 dBm 5 nsec 300 MHz 200 MHZ 2 dB 2 m
Antenna Height	2 m
System Loss	1 dB
Noise Figure	1 dB

EMI to Legacy Systems

EMI Zone	20 m
I/N	6 dB
Noise Figure	10 dB
Band Width	25 kHz
Antenna Gain	2 dB
Antenna Height	2 m
System Loss	1 dB

Implementations:

- Tactical Combat Network
- Robust Operations in Urban and Multipath
- On-the-move Unit Communications
- Precision Timing / Geo-Localization

High Data Rate – Short Range

UWB Link Data

Range	100 m
Data Rate	10 Mbps
S/N@ Max Range	7 dB
Peak Power	10 dBm
Pulse Width	1 nsec
Center Frequency	6.5 GHz
Bandwidth	1 GHZ
Antenna Gain	2 dB
Antenna Height	2 m
System Loss	1 dB
Noise Figure	1 dB

EMI to Legacy Systems

EMI Zone	10 m
I/N	-9 dB
Noise Figure	5 dB
Band Width	5 MHz
Antenna Gain	-10 dB
Antenna Height	2 m
System Loss	1 dB

Implementations:

- Unit Level Integrated Operational Picture
- Video to Foxhole
- Remote Surveillance Network

UWB Radar

UWB Radar

Range	500 m
Radar Cross Section	1 m ²
Pulse Repetition Rate	10 Kpps
S/N@ Max Range	2 dB
Peak Power	40 dBm
Pulse Width	1 nsec
Center Frequency	6.5 GHz
Bandwidth	1 GHZ
Antenna Gain	24 dB
Antenna Height	2 m
Noise Figure	1 dB
Total System Loss	2 dB

EMI to Legacy Systems

EMI Zone	10 m
I/N	-21 dB
Noise Figure	5 dBm
Band Width	5 MHz
Antenna Gain	-10 dB
Antenna Height	2 m
System Loss	1 dB

Implementations:

- High Resolution Imaging
 - Through the Wall
 - Human detection
- Micro UAV/ROV Collision Avoidance
- Wire Detection

UWB Personnel Radar

UWB Radar

Range Radar Cross Section Pulse Repetition Rate S/N@ Max Range Peak Power Pulse Width Center Frequency Bandwidth Antenna Gain Antenna Height	100 m 1 m ² 100 pps 6.6 dB 50 dBm 3.3 nsec 850 MHz 300 MHZ 2 dB 2 m
Antenna Gain	2 dB
Noise Figure Total System Loss	1 dB 1 dB

EMI to Legacy Systems

EMI Zone	10 m
I/N	20 dB
Noise Figure	5 dBm
Band Width	6 MHz
Antenna Gain	2 dB
Antenna Height	2 m
System Loss	1 dB

Implementation:

• Personnel Detection

Overall Summary of Preliminary EMI Test Results

- EMI Impact is related to the Average UWB Power in the Narrowest Receiver Passband
- For Most Conditions EMI Impact for UWB Signal is Approximately the Same as White Noise
- UWB Waveforms with Low PRFs Do Not Impact Performance
- UWB Waveforms with High PRFs Impact Performance Only When Spectral Component is at or Near Receiver Frequency
- Spectral Mask Defines UWB Susceptibility Threshold for Legacy Systems
- UWB Systems Can Support Militarily Useful Functions and Can Coexist With Legacy Systems Without Creating EMI